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Abstract
In the Randall–Sundrum scenario, we analyse the dynamics of an AdS5

braneworld when conformal matter fields propagate in five dimensions. We
show that conformal fields of weight −4 are associated with stable geometries
which describe the dynamics of inhomogeneous dust, generalized dark
radiation and homogeneous polytropic dark energy on a spherically symmetric
3-brane embedded in the compact AdS5 orbifold. We discuss aspects of the
radion stability conditions and of the localization of gravity in the vicinity of
the brane.

PACS numbers: 04.50.+h, 04.70.−s, 98.80.−k, 11.25.Mj

1. Introduction

In the Randall–Sundrum (RS) scenario [1, 2], the observable four-dimensional (4D) universe is
a 3-brane world embedded in a Z2 symmetric 5D anti-de Sitter (AdS) space. In the RS1 model
[1], the fifth dimension is compact and there are two 3-brane boundaries. The gravitational
field is bound to the hidden positive tension brane and decays towards the observable negative
tension brane. In this setting, the hierarchy problem is reformulated as an exponential hierarchy
between the weak and Planck scales [1]. In the RS2 model [2], the orbifold has an infinite fifth
dimension and just one observable positive tension brane near which gravity is exponentially
localized.

In the RS models, the classical field dynamics is defined by 5D Einstein equations with
a negative bulk cosmological constant �B, Dirac delta sources standing for the branes and a
stress–energy tensor describing other fields propagating in the bulk [1–3]. A set of vacuum
solutions is given by ds̃2

5 = dy2 + e−2|y|/l ds2
4 , where y is the Cartesian coordinate representing

the fifth dimension, the 4D line element ds2
4 is Ricci flat, l is the AdS radius given by
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l = 1/
√

−�Bκ2
5

/
6 with κ2

5 = 8π/M3
5 and M5 is the fundamental 5D Planck mass. In the RS1

model, the hidden Planck brane is located at y = 0 and the visible brane at y ′ = πrc, where
rc is the RS compactification scale [1]. The brane tensions λ > 0 and λ′ < 0 have the same
absolute value |λ′| = λ. In the vacuum, λ is given in terms of �B and l by λ = −�Bl. In
the RS2 model [2], the visible brane is the one with positive tension λ located at y = 0. The
hidden brane is sent to infinity and is physically decoupled.

The low energy theory of gravity on the observable brane is 4D general relativity, and
the cosmology may be Friedmann–Robertson–Walker [1–10]. In the RS1 model, this requires
the stabilization of the radion mode using, for example, a 5D scalar field [3, 6, 9, 10]. The
gravitational collapse of matter has also been analysed in the RS scenario [11–16]. However,
an exact 5D geometry describing a stable black hole localized on a 3-brane has not yet been
discovered. Indeed, non-singular localized black holes have only been found in an AdS4

braneworld [12]. A solution to this problem requires a simultaneous localization of gravity
and matter which avoids unphysical divergences [11, 13–16] and could be related to quantum
black holes on the brane [15]. In addition, the covariant Gauss–Codazzi approach [17, 18]
has uncovered a rich set of braneworld solutions, many of which have not yet been associated
with exact 5D spacetimes [19–22].

In this paper we report on research about the dynamics of a spherically symmetric
3-brane in the presence of 5D conformal matter fields [16, 23] (see also [24]). In the previous
work [16, 23], we have discovered a new class of exact 5D dynamical solutions for which
gravity is bound to the brane by the exponential RS warp. These solutions were shown to be
associated with conformal bulk fields characterized by a stress–energy tensor T̃ ν

µ of weight
−4 and by the equation of state T̃ a

a = 2T̃ 5
5 (see also [5] and [25]). They were also shown

to describe on the brane the dynamics of inhomogeneous dust, generalized dark radiation
and homogeneous polytropic matter. However, the density and pressures of the conformal
bulk fluid increase with the coordinate of the fifth dimension. Consequently and just like in
the Schwarzschild black string solution [11], the RS2 scenario is plagued with an unphysical
singularity at the AdS horizon. Such divergence does not occur in the RS1 model because the
compactified space ends before the AdS horizon is reached. However, the radion mode turns
out to be unstable [26]. In this work, we discuss new exact 5D braneworld solutions which
are stable under radion field perturbations and still describe on the visible brane the dynamics
of inhomogeneous dust, generalized dark radiation and homogeneous polytropic dark energy.
We also consider the point of view of an effective Gauss–Codazzi observer and show that the
gravitational field is bound to the vicinity of the brane.

2. 5D Einstein equations and conformal fields

To map the AdS5 orbifold, consider the coordinates (t, r, θ, φ, z) where z is related to the
Cartesian coordinate y by z = l ey/l, y > 0. The most general non-factorizable dynamical
metric consistent with the Z2 symmetry in z and with 4D spherical symmetry on the brane is
given by

ds̃2
5 = �2 (

dz2 − e2A dt2 + e2B dr2 + R2 d�2
2

)
, (1)

where � = �(t, r, z), A = A(t, r, z), B = B(t, r, z) and R = R(t, r, z) are Z2 symmetric
functions. R(t, r, z) represents the physical radius of the 2-spheres, and � is the warp factor
characterizing a global conformal transformation on the metric.

In the RS1 model, the classical dynamics is defined by the 5D Einstein equations,

G̃ν
µ = −κ2

5

{
�Bδν

µ +
1√
g̃55

[λδ(z − z0) + λ′δ(z − z′
0)]

(
δν
µ − δν

5δ5
µ

) − T̃ ν
µ

}
, (2)
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where T̃ ν
µ is the stress–energy tensor of the matter fields which is conserved in 5D,

∇̃µT̃ µ
ν = 0. (3)

For a general 5D metric g̃µν , (2) and (3) form an extremely complex system of differential
equations. To solve it, we need simplifying assumptions about the field variables involved in
the problem. Let us first consider that the bulk matter is described by conformal fields with
weight s. Under the conformal transformation g̃µν = �2gµν , the stress–energy tensor satisfies
T̃ ν

µ = �s+2T ν
µ . Consequently, (2) and (3) may be rewritten as [16]

Gν
µ = −6�−2(∇µ�)gνρ∇ρ� + 3�−1gνρ∇ρ∇µ� − 3�−1δν

µgρσ∇ρ∇σ�

− κ2
5 �2

{
�Bδν

µ + �−1[λδ(z − z0) + λ′δ(z − z′
0)]

(
δν
µ − δν

5δ5
µ

) − �s+2T ν
µ

}
,

(4)

∇µT µ
ν + �−1 [

(s + 7)T µ
ν ∂µ� − T µ

µ ∂ν�
] = 0. (5)

If we separate the conformal tensor T̃ ν
µ into two sectors T̃ ν

µ and Ũ ν
µ with the same weight

s, T̃ ν
µ = T̃ ν

µ + Ũ ν
µ where T̃ ν

µ = �s+2T ν
µ and Ũ ν

µ = �s+2Uν
µ, and take s = −4 then it is possible

to split (4) as follows:

Gν
µ = κ2

5 T ν
µ , (6)

6�−2∇µ�∇ρ�gρν − 3�−1∇µ∇ρ�gρν + 3�−1∇ρ∇σ�gρσ δν
µ

= −κ2
5 �2

{
�Bδν

µ + �−1[λδ(z − z0) + λ′δ(z − z′
0)]

(
δν
µ − δν

5δ5
µ

)}
+ κ2

5 Uν
µ. (7)

On the other hand, the Bianchi identity implies

∇µT µ
ν = 0. (8)

Then (5) is in fact

∇µUµ
ν + �−1

[
3T µ

ν ∂µ� − T µ
µ ∂ν�

] = 0. (9)

Note that (6) and (8) are 5D Einstein equations with conformal bulk fields, but without a brane
or bulk cosmological constant. They do not depend on the warp factor which is dynamically
defined by (7) and (9). The warp is then the only effect reflecting the existence of the brane or
of the bulk cosmological constant. We emphasize that this is only possible for the special set
of bulk fields which have a stress–energy tensor with conformal weight s = −4.

Although the system of dynamical equations is now partially decoupled, it remains difficult
to solve. Note for instance that � depends nonlinearly on A,B and R. In addition, it is affected
by T ν

µ and Uν
µ. So consider the special setting A = A(t, r), B = B(t, r), R = R(t, r) and

� = �(z). Then (6) and (7) lead to

Gb
a = κ2

5 T b
a , (10)

G5
5 = κ2

5 T 5
5 , (11)

6�−2(∂z�)2 + κ2
5 �2�B = κ2

5 U 5
5 , (12)

{
3�−1∂2

z � + κ2
5 �2{�B + �−1[λδ(z − z0) + λ′δ(z − z′

0)]}
}
δb
a = κ2

5 Ub
a , (13)

where the latin indices represent the 4D coordinates t, r , θ and φ. Since according to (10) and
(11) T ν

µ depends only on t and r, (8) becomes

∇aT
a
b = 0. (14)
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On the other hand, (12) and (13) imply that Uν
µ must be diagonal, Uν

µ = diag(−ρ̄, p̄r, p̄T,

p̄T, p̄5), with the density ρ̄ and pressures p̄r, p̄T satisfying ρ̄ = −p̄r = −p̄T. In addition,
Uν

µ must only depend on z. Consequently, ∇aU
a
b = 0 is an identity. Then using (9) and noting

that T ν
µ = T ν

µ (t, r), we find

∂zp̄5 + �−1∂z�
(
2U 5

5 − Ua
a

) = 0, 2T 5
5 = T a

a . (15)

If Uν
µ(z) is a conserved tensor field like T ν

µ , then p̄5 must be constant. So (15) leads to the
following equations of state:

2T 5
5 = T a

a , 2U 5
5 = Ua

a . (16)

Then we obtain p̄5 = −2ρ̄. Uν
µ is thus constant. On the other hand if T ν

µ =
diag (−ρ, pr, pT, pT, p5) where ρ, pr, pT and p5 are, respectively, the density and pressures
then its equation of state is rewritten as

ρ − pr − 2pT + 2p5 = 0. (17)

Note that ρ, pr, pT and p5 must be independent of z, but may be functions of t and r. The
bulk matter is, however, inhomogeneously distributed along the fifth dimension because the
physical energy density, ρ̃(t, r, z), and pressures, p̃(t, r, z), are related to ρ(t, r) and p(t, r)

by the scale factor �−2(z). Also note that T ν
µ determines the dynamics on the branes and that

in the RS1 model, the two branes have identical cosmological evolutions. On the other hand,
it is also important to note that the warp factor depends on the conformal bulk fields only
through Uν

µ. Consequently, the role of Uν
µ is to influence how the gravitational field is warped

around the branes. In our previous work Uν
µ was set to zero [16, 23, 26]. The corresponding

braneworld solutions were warped by the exponential RS scale factor and turned out to be
unstable under radion field perturbations [26]. So we also introduce Uν

µ as a stabilizing sector.

3. Exact 5D warped solutions

The AdS5 braneworld dynamics is defined by the solutions of (10) to (14) and (17). Let us
first solve (12) and (13). As we have seen, Uν

µ is constant with ρ̄ = −p̄r = −p̄T = −p̄5/2.
If p̄5 = 0 then Uν

µ = 0, and we end up with the usual RS warp equations. As is well known,
a solution is the exponential RS warp �(y) = �RS(y) = e−|y|/l [1, 2]. If p̄5 is non-zero then
we find a new set of warp solutions. Integrating (12) and taking into account the Z2 symmetry,
we obtain (see figure 1)

�(y) = e−|y|/l
(
1 + p5

B e2|y|/l
)
, (18)

where p5
B = p̄5/(4�B). This set of solutions must also satisfy (13) which contains the Israel

jump conditions. As a consequence, the brane tensions λ and λ′ are given by

λ = λRS
1 − p5

B

1 + p5
B

, λ′ = −λRS
1 − p5

B exp(2πrc/l)

1 + p5
B exp(2πrc/l)

, (19)

where λRS = 6
/(

lκ2
5

)
. Note that in the limit p5

B → 0, we obtain the RS warp and also the
corresponding brane tensions.

To determine the dynamics on the brane, we need to solve (10) and (11) when T ν
µ satisfies

(14) and (17). Note that as long as p5 balances ρ, pr and pT according to (11) and (17), the 4D
equation of state is not constrained. Three examples corresponding to inhomogeneous dust,
generalized dark radiation and homogeneous polytropic matter were analysed in [16] and [23].
The latter describes the dynamics on the brane of dark energy in the form of a polytropic fluid.
The diagonal conformal matter may be defined by

ρ = ρP, pr + ηρP
α = 0, pT = pr, p5 = − 1

2

(
ρP + 3ηρP

α
)
, (20)
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Figure 1. Plots of W = ln �(x), x = y/rc for l/rc = 5. The dashed, thin and thick lines
correspond, respectively, to p5

B equal to 1.5, 0.5 and 0.15.
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Figure 2. Plots of V = SṠ2, Z = S1−α for k > 0, η > 0 and a > 0. The dashed, thin and thick
lines correspond, respectively, to α equal to −1/4, −1/2 and −1.

where ρP is the polytropic energy density and the parameters (α, η) characterize different
polytropic phases.

Solving the conservation equations, we find [23, 27]

ρP =
(
η +

a

S3−3α

) 1
1−α

, (21)

where α �= 1, a is an integration constant and S = S(t) is the Robertson–Walker scale factor
of the brane world which is related to the physical radius by R = rS. For −1 � α < 0,
the fluid is in its generalized Chaplygin phase (see also [27]). With this density, the Einstein
equations lead to the following 5D dark energy polytropic solutions [23]:

ds̃2
5 = �2

[
−dt2 + S2

(
dr2

1 − kr2
+ r2 d�2

2

)]
+ dy2, (22)

where the brane scale factor S satisfies Ṡ2 = κ2
5 ρPS

2/3 − k. The global evolution of the
observable universe is then given by [22, 23]

SṠ2 = V (S) = κ2
5

3

(
ηS3−3α + a

) 1
1−α − kS. (23)

In figure 2, we present some illustrative examples.
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4. Radion stability

To analyse how these solutions behave under radion field perturbations, we consider the saddle
point expansion of the RS action [26, 28, 29]

S̃ =
∫

d4x dy
√−g̃

{
R̃

2κ2
5

− �B − 1√
g̃55

[λδ(y) + λ′δ(y − πrc)] + L̃B

}
, (24)

where L̃B is the Lagrangian characterizing the 5D matter fields. The most general metric
consistent with the Z2 symmetry in y and with 4D spherical symmetry on the brane may be
written in the form

ds̃2 = a2 ds2
4 + b2 dy2, ds2

4 = −dt2 + e2B dr2 + R2 d�2
2, (25)

where the metric functions a = a(t, r, y), B = B(t, r, y), R = R(t, r, y) and b = b(t, r, y)

are Z2 symmetric. Now a is the warp factor and b is related to the radion field. Our braneworld
backgrounds correspond to b = 1, B = B(t, r), R = R(t, r) and a = �(y).

Consider (25) with a(t, r, y) = �(y) e−β(t,r) and b(t, r) = eβ(t,r). Then the dimensional
reduction of (24) in the Einstein frame leads to [26]

S̃ =
∫

d4x
√−g4

(
R4

2κ2
4

− 1

2
∇cγ∇dγ gcd

4 − Ṽ

)
, (26)

where γ = β/(κ4
√

2/3) is the canonically normalized radion field. The function Ṽ = Ṽ (γ )

is the radion potential, and it is given by

Ṽ = 2

κ2
5

χ3
∫

dy�2
[
3(∂y�)2 + 2�∂2

y�
]

+ χ

∫
dy�4(�B − L̃B)

+ χ2
∫

dy�4[λδ(y) + λ′δ(y − πrc)], (27)

where χ = exp(−κ4γ
√

2/3), and we have chosen
∫ πrc

−πrc
dy�2 = κ2

5 /κ2
4 .

To analyse the stability of the AdS5 braneworld solutions, we consider the saddle point
expansion of the radion field potential Ṽ . If p5

B = 0, then � = �RS. The radion potential
has two critical extrema, χ1 = 1 and χ2 = 1/3 [26]. Our solutions correspond to the first
root χ1 = 1. The same happens if the bulk matter is absent as in the RS vacuum solutions.
Stable background solutions must be associated with a positive second variation of the radion
potential. If the equation of state of the conformal bulk fields is independent of the radion
perturbation, then for χ = χ1 = 1 the second variation is negative, and so the braneworld
solutions are unstable [26].

If the equation of state is kept invariant under the radion perturbations, it is possible to
find stable solutions at χ = 1 if the warp is changed. Indeed, the new relevant warp functions
are given in (18). Consider Ṽ = ∫

d4x
√−g4Ṽ . With x = y/rc and rc

∫ π

−π
dx�2 = κ2

5

/
κ2

4 , we
find

δ2Ṽ
δγ 2

∣∣∣∣
γ=0

= −4

3
κ2

4

(
r2

c

∫
dx�2

)−1 ∫
d4x

√−g̃4M, (28)

where the dimensionless radion mass parameter M is

M = λrcκ
2
5 �4(0) + λ′rcκ

2
5 �4(π) − 6r2

c

l2

∫
dx�4. (29)

Stable solutions correspond to M < 0. Consequently, stability exists for a range of the
model parameters if p5

B > 0 (see figure 3). For p5
B � 0, all solutions are unstable. For

p5
B > 0, the stability of the AdS5 braneworlds also depends on the dimensionless ratio l/rc.
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Figure 3. Plot of radion mass parameter M for l/rc = 5. Thick line, 0 < p5
B � e−2π/5 : λ > 0,

λ′ � 0. Thin line, e−2π/5 < p5
B � 1 : λ � 0, λ′ > 0. Dashed line, p5

B > 1 : λ < 0, λ′ > 0.

For l/rc < 1.589 . . . , all solutions turn out to be unstable. Stable universes begin to appear
at l/rc = 1.589 . . . , p5

B = 0.138 . . . . For l/rc > 1.589 . . . , we find stable solutions for an
interval of p5

B (see the example of l/rc = 5 in figure 3), which increases with l/rc. For
large enough but finite l/rc, the stability interval approaches the limit ]0.267 . . . , 3.731 . . . [.
Naturally, M → 0 if l/rc → ∞.

5. Gauss–Codazzi equations and localization of gravity

For an observer confined to the brane, the effective 4D Einstein equations are given by
[16–18, 21]

Gν
µ = 2κ2

5

3

[
Uβ

α qα
µqν

β +

(
Uβ

α nαnβ − 1

4
Uα

α

)
qν

µ

]
+ Kα

αKν
µ − Kα

µKν
α − 1

2
qν

µ

(
K2 − Kβ

αKα
β

) − Eν
µ,

(30)

where Gν
µ = Gβ

αqα
µqν

β , nµ = δ
µ

5 is the unit normal to the brane and qν
µ = δν

µ − nµnν . The
stress–energy tensor is Uν

µ = −�B�2(0)δν
µ + T ν

µ , Kν
µ is the extrinsic curvature and Eν

µ is the
traceless projection of the 5D Weyl tensor. The 4D observer finds the same dynamics on
the brane because [16]

Eb
a = κ2

5

3

(
−T b

a +
1

2
T 5

5 δb
a

)
(31)

and

4

3

(
Ub

a +
1

4
U 5

5 δb
a

)
−

(
�B +

κ2
5 λ2

6

)
δb
a�

2(0) = 0. (32)

Since the tidal acceleration [16, 21] is aT = κ2
5 �B

(
1 + p5

B

)2/
6 < 0, the gravitational field is

bound to the vicinity of the brane.

6. Conclusions

In this paper we have analysed exact 5D solutions describing the dynamics of AdS5 braneworlds
when conformal fields of weight −4 are present in the bulk. We have discussed their behaviour
under radion field perturbations and shown that if the equation of state characterizing the
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conformal fluid is independent of the perturbation, then the radion may be stabilized by a
sector of the conformal fields while another sector of the same class of fields generates the
dynamics on the brane. Stabilization requires a bulk fluid sector with a constant negative 5D
pressure and involves new warp functions. On the brane these solutions are able to describe, for
example, the dynamics of inhomogeneous dust, generalized dark radiation and homogeneous
polytropic dark energy. More general 4D equations of state may also be considered. This
analysis is left for future work. We have also shown that an effective Gauss–Codazzi observer
sees gravity localized near the brane and deduces the same dynamics on the brane if she makes
the same hypothesis about the 5D fields. Whether gravity is sufficiently bound to the brane
and the hierarchy is strong enough are open problems for future research.
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